4,991 research outputs found

    Search for the Supersymmetric Partner of the Top-Quark in ppˉp \bar{p} Collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV}

    Full text link
    We report on a search for the supersymmetric partner of the top quark (stop) produced in ttˉt \bar{t} events using 110pb1110 {\rm pb}^{-1} of ppˉp \bar{p} collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV} recorded with the Collider Detector at Fermilab. In the case of a light stop squark, the decay of the top quark into stop plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with Standard Model ttˉt \bar{t} production and decay. Hence, we set limits on the branching ratio of the top quark decaying into stop plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 {\rm GeV/c}2^{2}.Comment: 11 pages, 4 figure

    Measurement of the ttˉproductioncrosssectionint\bar{t} production cross section in p\bar{p}collisionsat collisions at \sqrt{s}$ = 1.8 TeV

    Full text link
    We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses ttˉt\bar{t} decays to the final states e+νe+\nu+jets and μ+ν\mu+\nu+jets. We search for bb quarks from tt decays via secondary-vertex identification or the identification of semileptonic decays of the bb and cascade cc quarks. The background to the ttˉt\bar{t} production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 GeV/c2GeV/c^2, we measure σttˉ=5.1±1.5\sigma_{t\bar{t}}=5.1 \pm 1.5 pb and σttˉ=9.2±4.3\sigma_{t\bar{t}}=9.2 \pm 4.3 pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other ttˉt\bar{t} decay channels and obtain σttˉ=6.51.4+1.7\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4} pb.Comment: The manuscript consists of 130 pages, 35 figures and 42 tables in RevTex. The manuscript is submitted to Physical Review D. Fixed typo in author lis

    Measurement of J/Psi and Psi(2S) Polarization in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.Comment: Revised version, accepted for publication in Physical Review Letter

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Search for Chargino-Neutralino Associated Production at the Fermilab Tevatron Collider

    Full text link
    We have searched in ppˉp \bar{p} collisions at s\sqrt{s} = 1.8 TeV for events with three charged leptons and missing transverse energy. In the Minimal Supersymmetric Standard Model, we expect trilepton events from chargino-neutralino (\chione \chitwo) pair production, with subsequent decay into leptons. We observe no candidate e+ee±e^+e^-e^\pm, e+eμ±e^+e^-\mu^\pm, e±μ+μe^\pm\mu^+\mu^- or μ+μμ±\mu^+\mu^-\mu^\pm events in 106 pb1^{-1} integrated luminosity. We present limits on the sum of the branching ratios times cross section for the four channels: \sigma_{\chione\chitwo}\cdot BR(\chione\chitwo\to 3\ell+X) 81.5 \mgev\sp and M_\chitwo > 82.2 \mgev\sp for tanβ=2\tan\beta=2, μ=600\mu =-600~\mgev\sp and M_\squark= M_\gluino.Comment: 9 pages and 3 figure

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Limits on Gravitino Production and New Processes with Large Missing Transverse Energy in p-pbar Collisions at sqrt(s)=1.8 TeV

    Get PDF
    Events collected by the Collider Detector at Fermilab (CDF) with an energetic jet plus large missing transverse energy can be used to search for physics beyond the Standard Model. We see no deviations from the expected background and set upper limits on the production of new processes. We consider in addition the production of light gravitinos within the framework of the Gauge Mediated Supersymmetry Breaking models and set a limit at 95% confidence level on the breaking scale sqrt(F) >= 217 GeV, which excludes gravitino masses smaller than 1.1x10^-5 eV/c^2.Comment: 13 pages, 4 figures. Submitted to Physical Review Letter

    Production of Y(1S) Mesons from chib Decays in pp(bar) Collisions at sqrt(s)=1.8 TeV

    Full text link
    We have reconstructed the radiative decays χb(1P)Υ(1S)γ\chi_{b}(1P) \to \Upsilon(1S) \gamma and χb(2P)Υ(1S)γ\chi_{b}(2P) \to \Upsilon(1S) \gamma in ppˉp \bar{p} collisions at s=1.8\sqrt{s} = 1.8 TeV, and measured the fraction of Υ(1S)\Upsilon(1S) mesons that originate from these decays. For Υ(1S)\Upsilon(1S) mesons with pTΥ>8.0p^{\Upsilon}_{T}>8.0 GeV/cc, the fractions that come from χb(1P)\chi_{b}(1P) and χb(2P)\chi_{b}(2P) decays are (27.1±6.9(stat)±4.4(sys))(27.1\pm6.9(stat)\pm4.4(sys))% and (10.5±4.4(stat)±1.4(sys))(10.5\pm4.4(stat)\pm1.4(sys))%, respectively. We have derived the fraction of directly produced Υ(1S)\Upsilon(1S) mesons to be (50.9±8.2(stat)±9.0(sys))(50.9\pm8.2(stat)\pm9.0(sys))%.Comment: 13 Pages, 2 figure

    Measurement of Rapidity Distribution for High Mass Drell-Yan ee Pairs at CDF

    Full text link
    We report on the first measurement of the rapidity distribution dsigma/dy over nearly the entire kinematic region of rapidity for e^+e^- pairs in the Z-boson region of 66116 GeV/c^2. The data sample consists of 108 pb^{-1} of ppbar collisions at \sqrt{s}=1.8 TeV taken by the Collider Detector at Fermilab during 1992--1995. The total cross section in the ZZ-boson region is measured to be 252 +- 11 pb. The measured total cross section and d\sigma/dy are compared with quantum chromodynamics calculations in leading and higher orders.Comment: 7 pages, 3 figures. Submitted to Physical Review Letter

    Measurement of the Helicity of W Bosons in Top Quark Decays

    Full text link
    We use the transverse momentum spectrum of leptons in the decay chain t-->bW with W-->l nu to measure the helicity of the W bosons in the top quark rest frame. Our measurement uses a ttbar sample isolated in 106 +/- 4 inverse picobarns of data collected in ppbar collisions at sqrt(s)=1.8 TeV with the CDF detector at the Fermilab Tevatron. Assuming a standard V--A weak decay, we find that the fraction of W's with zero helicity in the top rest frame is F_0 = 0.91 +/- 0.37 (stat) +/- 0.13 (syst), consistent with the standard model prediction of F_0=0.70 for a top mass of 175 GeV/c**2.Comment: Submitted to PRL. 8 pages, 2 figure
    corecore